Alexandrov’s Theorem, Weighted Delaunay Triangulations, and Mixed Volumes
نویسندگان
چکیده
— We present a constructive proof of Alexandrov’s theorem on the existence of a convex polytope with a given metric on the boundary. The polytope is obtained by deforming certain generalized convex polytopes with the given boundary. We study the space of generalized convex polytopes and discover a connection with weighted Delaunay triangulations of polyhedral surfaces. The existence of the deformation follows from the non-degeneracy of the Hessian of the total scalar curvature of generalized convex polytopes with positive singular curvature. This Hessian is shown to be equal to the Hessian of the volume of the dual generalized polyhedron. We prove the non-degeneracy by applying the technique used in the proof of Alexandrov-Fenchel inequality. Our construction of a convex polytope from a given metric is implemented in a computer program. Résumé. — Nous présentons, dans cet article, une démonstration constructive du théorème d’Alexandrov sur l’existence d’un polytope convexe ayant une métrique donnée sur son bord. Le polytope est obtenu en déformant des polytopes convexes généralisés dont le bord est donné. Nous étudions l’espace des polytopes convexes généralisés et mettons à jour une relation avec les triangulations de Delaunay pondérées des surfaces polyédrales. L’existence de la déformation est une conséquence de la non-dégénérescence du hessien de la courbure scalaire totale des polytopes convexes généralisés ayant leurs courbures singulières positives. Ce hessien se révèle être égal au hessien du volume du dual du polyèdre généralisé. Nous démontrons la non-dégénérescence en appliquant la technique utilisée dans la preuve de l’inégalité d’Alexandrov-Fenchel. Notre construction d’un polyope convexe à partir d’une métrique donnée est mise en œuvre dans un programme informatique.
منابع مشابه
A Variational Principle for Weighted Delaunay Triangulations and Hyperideal Polyhedra
We use a variational principle to prove an existence and uniqueness theorem for planar weighted Delaunay triangulations (with non-intersecting site-circles) with prescribed combinatorial type and circle intersection angles. Such weighted Delaunay triangulations may be interpreted as images of hyperbolic polyhedra with one vertex on and the remaining vertices beyond the infinite boundary of hype...
متن کاملDynamic Delaunay tetrahedralizations and Voronoi tessellations in three dimensions
We describe the implementation of an incremental insertion algorithm to construct and maintain three-dimensional Delaunay triangulations with dynamic vertices using a three-simplex data structure. The code is capable of constructing the geometric dual, the Voronoi or Dirichlet tesselation. A given list of generators is triangulated and volumes as well as contact surfaces of the Dirichlet region...
متن کاملPerturbations for Delaunay and weighted Delaunay 3D triangulations
The Delaunay triangulation and the weighted Delaunay triangulation are not uniquely defined when the input set is degenerate. We present a new symbolic perturbation that allows to always define these triangulations in a unique way, as soon as the points are not all coplanar. No flat tetrahedron exists in the defined triangulation. The perturbation scheme is easy to code; It is implemented in cg...
متن کاملGeneral-Dimensional Constrained Delaunay and Constrained Regular Triangulations, I: Combinatorial Properties
Two-dimensional constrained Delaunay triangulations are geometric structures that are popular for interpolation and mesh generation because they respect the shapes of user-specified domains, they have “nicely shaped” triangles that optimize several criteria, and they are easy to construct and update. The present work generalizes constrained Delaunay triangulations (CDTs) to higher dimensions, a...
متن کاملOn Delaunay Oriented Matroids for Convex Distance Functions
For any nite point set S in Ed, an oriented matroid DOM(S) can be de ned in terms of how S is partitioned by Euclidean hyperspheres. This oriented matroid is related to the Delaunay triangulation of S and is realizable, because of the lifting property of Delaunay triangulations. We prove that the same construction of a Delaunay oriented matroid can be performed with respect to any smooth, stric...
متن کامل